3,4-Dibromo-2,3,4,5-tetrahydro-1,6-benzodioxocin

By John C. Barnes* and John D. Paton
Chemistry Department, The University, Dundee DD 1 4HN, Scotland

and Werner Schroth
Sektion Chemie, Martin Luther Universität, DDR 4020 Halle Saale, German Democratic Republic
(Received 29 September 1987; accepted 9 November 1987)

Abstract

C}_{10} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2}, \quad M_{r}=321.98\), monoclinic, $C 2 / c, \quad a=21.43$ (4),$\quad b=6.30$ (2), $\quad c=16.65$ (4) \AA, $\beta=101.87(5)^{\circ}, \quad V=2199.83 \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.95 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{CuK} \mathrm{\alpha})=1.5418 \AA, \mu=8.59 \mathrm{~mm}^{-1}$, $F(000)=1248, T=293 \mathrm{~K}, R=0.071$ for 815 reflexions. The crystal contains the racemate of the R, R isomer. The molecule has approximate C_{2} symmetry with the Br atoms in 'adjacent trans' positions and the $\mathrm{Br}-\mathrm{C}-\mathrm{C}-\mathrm{Br}$ torsion angle $72 \cdot 6$ (5) ${ }^{\circ}$.

Introduction. The title compound was produced from 2,5-dihydro-1,6-benzodioxocin as an intermediate in an unsuccessful route to 1,6 -benzodioxocin (Schroth \& Werner, 1967). The detailed conformation of the molecule was of interest to clarify the mechanism of the formation of 1-(o-hydroxyphenoxy)-2-butyn-1-one instead of the desired product.

Experimental. White plates were available from previous work. After preliminary photographs, data were collected from crystals $0.16 \times 0.47 \times 0.20 \mathrm{~mm}$ by equi-inclination Weissenberg photography on layers $h 0-5 l$ and $h k 0-2$. The SERC Microdensitometer Service, Daresbury Laboratory, Warrington, England, measured 2289 reflexions which reduced to 815 unique data. After absorption correction $R_{\text {int }}=0.092$. Index limits $|h| \leq 24,|k| \leq 7,|l| \leq 19$. Cell dimensions refined as part of intensity measurements routine. Max. $2 \theta 124^{\circ}$.

Before attempting a direct-methods solution, the data were enhanced by the addition of visual estimates for 20 over-intense or streaky reflexions and 1588 reflexions which were below the film background were assigned $F_{o}=0.5 F_{\text {min }}$. Under-representation of the $g g u$ and $u u g$ symmetry classes in the E list gave pseudo F centring. This was overcome by choosing the starting set for the direct-methods routine $E E E S$ largely from these reflexions. The best E map showed the two Br atoms. These were used to phase a difference synthesis which revealed all remaining non-H atoms. Conventional refinement gave $R=0.071$ with all non-H atoms

[^0]anisotropic and isotropic H atoms included on calculated positions.

Final refinement (minimizing $\sum w\left|F_{o}-\left|F_{c}\right|^{2}\right.$): 131 refined parameters, $R=0.071, \quad w R=0.096, \quad w=$ $22 \cdot 1422 /\left(1+0.000273 F^{2}\right)$; mean shift/e.s.d. $=0.004$, max. shift/e.s.d. $=0.022$; on difference map, max. positive peak $=1.27 \mathrm{e} \AA^{-3}$ (near Br), max. negative peak $=1.11 \mathrm{e}^{\AA^{-3}}$.

Programs used: SHELX76 (Sheldrick, 1976) and XANADU (Roberts \& Sheldrick, 1975). Atomic scattering factors from SHELX76.

Discussion. Final atomic coordinates are given in Table 1 , bond lengths and angles in Table 2. \dagger The molecule is shown in Fig. 1. The numbering scheme has been chosen to aid comparison with the recently determined structure of the isomer 2-(1,2-dibromoethyl)-1,4-benzodioxan (Barnes \& Schroth, 1988) which was obtained from a second product of the reaction leading to the 2,5-dihydro-1,6-benzodioxocin (Schroth, Reinhardt, Kranke \& Streichenbach, 1963; Schroth \& Werner, 1967).

The crystal contains the racemate of the R, R isomer. The torsion angle $\mathrm{Br} 12-\mathrm{C} 11-\mathrm{C} 13-\mathrm{Br} 14$ is $72.6(5)^{\circ}$, indicating that the Br atoms occupy 'adjacent trans' positions with H111 and H131 in the 'remote trans' positions with the $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ torsion angle $\mathrm{ca} 167^{\circ}$. The molecule has an approximate C_{2} axis through the midpoints of $\mathrm{C} 6-\mathrm{C} 7$ and $\mathrm{C} 11-\mathrm{C} 13$. Deviations from the mean plane of the benzene ring are 0.916 (1) (C2), -1.068 (1) (C3), 0.095 (1) (C11) and -0.346 (1) \AA (C13). The bond C11-C13 makes an angle of $73.6(5)^{\circ}$ with the normal to this plane. Rotation about C11-C13 in a model of the title compound reveals an alternative low-energy conformation with the corresponding angle ca 35° with minimal movement of C2

[^1]Table 1. 3,4-Dibromo-2,3,4,5-tetrahydro-1,6-benzodioxocin coordinates $\left(\times 10^{4}\right)$ for non -H atoms and $U_{\text {eq }}$ values $\left(\AA^{2} \times 10^{3}\right)$ with e.s.d.'s in parentheses

	$U_{\mathrm{eq}}=\frac{1}{3} \backslash_{i} \backslash_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$U_{\text {eq }}$
Ol	4610 (5)	870 (18)	3521 (8)	50 (4)
C2	4229 (7)	1289 (28)	4112 (10)	41 (5)
C3	4419 (6)	5490 (30)	3312 (10)	44 (5)
O4	4955 (5)	5166 (18)	3983 (7)	50 (4)
C5	6042 (8)	4249 (29)	4023 (11)	53 (6)
C6	6508 (8)	2780 (33)	3927 (12)	61 (6)
C7	6344 (8)	794 (33)	3673 (12)	55 (6)
C8	5705 (7)	169 (32)	3574 (11)	52 (6)
C9	5235 (6)	1597 (27)	3679 (9)	36 (4)
C10	5394 (7)	3665 (28)	3875 (10)	44 (5)
C11	3639 (7)	2589 (27)	3670 (9)	38 (4)
Br 12	2958 (1)	2229 (4)	4271 (1)	63 (1)
C13	3802 (6)	5002 (28)	3656 (10)	43 (5)
Br 14	3093 (1)	6415 (4)	2892 (2)	74 (1)

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

C2-O1	1.427 (18)	C9-O1-C2	118.3 (12)
C9-01	1.390 (17)	C11-C2-O1	107.1 (12)
C11-C2	1.559 (21)	C13-C3-04	106.6 (12)
O4-C3	1.443 (17)	C10-04-C3	117.0 (12)
C13-C3	1.576 (20)	C10-C5-C6	120.7 (17)
C10-04	1.373 (19)	C7-C6-C5	120.4 (15)
C6-C5	1.394 (24)	C8-C7-C6	119.0 (17)
C10-C5	1.409 (21)	C9-C8-C7	121.3 (18)
C7-C6	1.344 (26)	C8-C9-O1	117.3 (15)
C8-C7	1.402 (21)	C10-C9-O1	122.8 (14)
C9-C8	1.387 (22)	C10-C9-C8	119.7 (14)
C10-C9	1.369 (23)	C5-C10-O4	118.4 (15)
$\mathrm{Br} 12-\mathrm{Cl1}$	1.944 (13)	C9-C10-O4	122.9 (13)
C13-C11	1.561 (24)	C9-C10-C5	118.6 (16)
Br14-C13	1.980 (15)	Br12-C11-C2	108.5 (9)
		C13-C11-C2	110.9 (12)
		$\mathrm{C} 13-\mathrm{C} 11-\mathrm{Br} 12$	108.4 (11)
		C11-C13-C3	113.7 (13)
		Br14-C13-C3	105.6 (10)
		$\mathrm{Br} 14-\mathrm{Cl} 3-\mathrm{Cl} 11$	$107 \cdot 7$ (10)

Fig. 1. 3,4-Dibromo-2,3,4,5-tetrahydro-1,6-benzodioxocin.
and C 3 but at the expense of eclipsing the $\mathrm{C}-\mathrm{H}$ bonds on C2 and C11 and on C3 and C13 which are staggered in the observed structure. This conformation is that found in 8,9 -dimethyl-1,6-benzodithiocin (Barnes, Schroth \& Moegel, 1978) where the corresponding deviations from the plane of the benzene ring are $0.808,-1.080,0.368$ and $-0.837 \AA$, making the angle between C11-C13 and the normal to the benzene ring plane $33 \cdot 8(4)^{\circ}$.

References

Barnes, J. C. \& Schroth, W. (1988). Acta Cryst. C44, 189-190.
Barnes, J. C., Schroth, W. \& Moegel, L. (1978). Acta Cryst. B34, 3833-3834.
Roberts, P. \& Sheldrick, G. M. (1975). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
Schroth, W., Reinhardt, J., Kranke, K. \& Streichenbach, B. (1963). Z. Chem. 3, 228-229.

Schroth, W. \& Werner, B. (1967). Angew. Chem. Int. Ed. Engl. 6,697-698.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1988). C44, 518-521

The Structure of 11α-Hydroxycon-1,4-dienine-3-one Monohydrate

By R. Radhakrishnan and M. A. Viswamitra
Department of Physics and ICMR Centre on Genetics and Cell Biology, Indian Institute of Science, Bangalore-12, India

and K. K. Bhutani and M. Ali
Regional Research Laboratory, Jammu-1, India

(Received 30 July 1987; accepted 19 October 1987)

Abstract. $\quad \mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=359 \cdot 5, \quad$ ortho-
rhombic, $P 2_{2} 1_{1} 1_{1}, \quad a=10 \cdot 032(1), \quad b=11 \cdot 186(1), \quad c$
$=17.980(1) \AA, \quad U=2017.48 \AA^{3}, \quad Z=4, \quad D_{x}=$
1.276 Mg m
$-3, \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu=0.69 \mathrm{~mm}^{-1}$,
$F(000)=784, \quad T=293 \mathrm{~K}$. Final $R=0.05$ for 1972

unique reflections with $I \geq 3 \sigma(I)$. Ring A is planar, and rings B and C adopt a chair conformation. Rings D and E are envelopes, with $\mathrm{C}(14)$ and $\mathrm{C}(20)$ displaced from their respective ring planes by 0.616 (2) and 0.648 (3) \AA. The A / B ring junction is quasi-trans, © 1988 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44519 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.
 © 1988 International Union of Crystallography

